Drinfeld Orbifold Algebras
نویسنده
چکیده
We define Drinfeld orbifold algebras as filtered algebras deforming the skew group algebra (semi-direct product) arising from the action of a finite group on a polynomial ring. They simultaneously generalize Weyl algebras, graded (or Drinfeld) Hecke algebras, rational Cherednik algebras, symplectic reflection algebras, and universal enveloping algebras of Lie algebras with group actions. We give necessary and sufficient conditions on defining parameters to obtain Drinfeld orbifold algebras in two general formats, both algebraic and homological. We explain the connection between Hochschild cohomology and a Poincaré-Birkhoff-Witt property explicitly (using Gerstenhaber brackets). We also classify those deformations of skew group algebras which arise as Drinfeld orbifold algebras and give applications for abelian groups.
منابع مشابه
Pbw Deformations of Quantum Symmetric Algebras and Their Group Extensions
We examine PBW deformations of finite group extensions of quantum symmetric algebras, in particular the quantum Drinfeld orbifold algebras defined by the first author. We give a homological interpretation, in terms of Gerstenhaber brackets, of the necessary and sufficient conditions on parameter functions to define a quantum Drinfeld orbifold algebra, thus clarifying the conditions. In case the...
متن کاملA class of W - algebras with infinitely generated classical limit
There is a relatively well understood class of deformable W-algebras, resulting from Drinfeld-Sokolov (DS) type reductions of Kac-Moody algebras, which are Poisson bracket algebras based on finitely, freely generated rings of differential polynomials in the classical limit. The purpose of this paper is to point out the existence of a second class of deformable W-algebras, which in the classical...
متن کامل3 More Properties of Yetter - Drinfeld Modules over Quasi - Hopf Algebras
We generalize various properties of Yetter-Drinfeld modules over Hopf algebras to quasi-Hopf algebras. The dual of a finite dimensional Yetter-Drinfeld module is again a Yetter-Drinfeld module. The algebra H 0 in the category of Yetter-Drinfeld modules that can be obtained by modifying the multiplication in a proper way is quantum commutative. We give a Structure Theorem for Hopf modules in the...
متن کاملA Poincare-birkhoff-witt Theorem for Quadratic Algebras with Group Actions
Braverman, Gaitsgory, Polishchuk, and Positselski gave necessary and sufficient conditions for a nonhomogeneous quadratic algebra to satisfy the Poincaré-Birkhoff-Witt property when its homogeneous version is Koszul. We widen their viewpoint and consider a quotient of an algebra that is free over some (not necessarily semisimple) subalgebra. We show that their theorem holds under a weaker hypot...
متن کاملHochschild Cohomology and Quantum Drinfeld Hecke Algebras
Abstract. Quantum Drinfeld Hecke algebras are generalizations of Drinfeld Hecke algebras in which polynomial rings are replaced by quantum polynomial rings. We identify these algebras as deformations of skew group algebras, giving an explicit connection to Hochschild cohomology. We compute the relevant part of Hochschild cohomology for actions of many reflection groups and we exploit computatio...
متن کامل